The sum is over all partitions of n, and \left( p_1^{r_1} \ldots p_\ell^{r_\ell} \right) is the frequency representation of a partition. \left(\!\binom{n}{k}\!\right) is the multiset coefficient. It represents the number of ways to choose k elements out of n allowing repetition, and is equal to \binom{n+k-1}{k} .
The image below shows how the second formula can be derived with an example for a_{25}. Every node that is directly attached to the root is the root of a subtree, and the subtrees are arranged in a partition. Changing the partition changes the tree. You can switch out subtrees for another subtree with the same number of nodes, to get a new tree without changing the partition.
Using the program below I have verified that both recurrence relations are correct up to at least the 30^\text{th} term.
public class RootedTrees { | |
static long[] a = new long[100]; | |
static long[] b = new long[100]; | |
public static void main(String []args) { | |
a[1] = 1; | |
b[1] = 1; | |
for (int n = 1; n < 30; n++) { | |
System.out.print(afunc(n) + ", "); | |
} | |
System.out.println(); | |
for (int n = 1; n < 30; n++) { | |
System.out.print(bfunc(n) + ", "); | |
} | |
} | |
public static long afunc(int n) { | |
if (a[n] != 0) return a[n]; | |
long sum = 0; | |
for (int k = 1; k <= n-1; k++) { | |
long innerSum = 0; | |
int[] divs = getDivisors(k); | |
for (int i = 0; i < divs.length; i++) { | |
innerSum += divs[i] * afunc(divs[i]); | |
} | |
sum += innerSum * afunc(n - k); | |
} | |
a[n] = sum / (n-1); | |
if (sum % (n-1) != 0) System.out.print("OUCH "); | |
return a[n]; | |
} | |
public static int[] getDivisors(int k) { | |
int[] tmp = new int[k]; | |
int ind = 0; | |
for (int i = 1; i <= k; i++) { | |
if (k % i == 0) { | |
tmp[ind] = i; | |
ind++; | |
} | |
} | |
int[] ret = new int[ind]; | |
for (int i = 0; i < ind; i++) { | |
ret[i] = tmp[i]; | |
} | |
return ret; | |
} | |
public static long bfunc(int n) { | |
if (b[n] != 0) return b[n]; | |
long sum = 0; | |
int[][][] partitions = new Partition(n-1).get(); | |
for (int p = 0; p < partitions.length; p++) { | |
long product = 1; | |
for (int i = 0; i < partitions[p][0].length; i++) { | |
product *= | |
comboRep(bfunc(partitions[p][0][i]), | |
(long) partitions[p][1][i]); | |
} | |
sum += product; | |
} | |
b[n] = sum; | |
return sum; | |
} | |
public static long comboRep(long n, long k) { | |
long product = 1; | |
for (long i = n; i <= n+k-1; i++) { | |
product *= i; | |
} | |
long ans = product / factorial(k); | |
if (product % factorial(k) != 0) System.out.print("OUCH "); | |
return ans; | |
} | |
public static long factorial(long n) { | |
if (n == 0) return 1L; | |
return n * factorial(n-1); | |
} | |
public static class Partition { | |
private int n; | |
private String part; | |
public Partition(int n) { | |
this.n = n; | |
} | |
public int[][][] get() { | |
part = ""; | |
partition(n, n, ""); | |
String[] x = part.trim().split("\n"); | |
int[][][] y = new int[x.length][][]; | |
for (int i = 0; i < x.length; i++) { | |
String[] xs = x[i].trim().split(" "); | |
int curr = -1; | |
int ind = -1; | |
int[][] tempArr = new int[2][xs.length]; | |
for (int j = 0; j < xs.length; j++) { | |
int par = Integer.parseInt(xs[j]); | |
if (par != curr) { | |
ind++; | |
tempArr[0][ind] = par; | |
tempArr[1][ind] = 1; | |
curr = par; | |
} else { | |
tempArr[1][ind]++; | |
} | |
} | |
y[i] = new int[2][ind+1]; | |
for (int j = 0; j <= ind; j++) { | |
y[i][0][j] = tempArr[0][j]; | |
y[i][1][j] = tempArr[1][j]; | |
} | |
} | |
return y; | |
} | |
public void partition(int n, int max, String prefix) { | |
if (n == 0) { | |
part = part + prefix + "\n"; | |
return; | |
} | |
for (int i = Math.min(max, n); i >= 1; i--) { | |
partition(n-i, i, prefix + " " + i); | |
} | |
} | |
} | |
} |
No comments:
Post a Comment